The Flexible Clean Propulsion Technologies (Flex-CPT) project consortium, led by the University of Vaasa, aims to develop innovative, clean, and flexible solutions for maritime transport and off-road machinery. The goal is to reduce dependency on single fuel types, develop flexible hardware design, smart combustion control, efficient thermal management, and adaptive emission and hybrid energy management. These solutions will make it possible to use zero- and low-carbon fuels in the best way, reducing greenhouse gas emissions by up to 100%.
With the broad consortium of partners and budget of 18 million euros, this project will establish a realistic path for the Finnish powertrain industry towards carbon neutrality and shape the future of the marine and off-road sectors for decades to come.
To tackle this challenge the Flex-CPT consortium comprises a number of research organisations and companies: University of Vaasa, Tampere University, Aalto University, Åbo Akademi University, Lappeenranta-Lahti University of Technology LUT, VTT Technical Research Centre of Finland, University of Turku, University of Oulu, Wärtsilä Finland Oy, AGCO Power Oy, Meyer Turku Oy, Proventia Oy, Bosch Rexroth Oy, Hycamite TCD Technologies Oy, Lumikko Oy, and Meriaura Oy. The project involves intensive international cooperation with 12 international partners from 12 countries. The project is part of the Wärtsilä led Zero Emission Marine programme and Meyer Turku led NEcOLEAP programme.
The Flex-CPT consortium brings together key players within the ecosystem in Finland and offers a great opportunity to strengthen cooperation.
The consortium builds on groundbreaking development of the previous project, Clean Propulsion Technologies, which allowed Finland to embrace a leadership role in powertrain solutions for marine transport and off-road machinery.
The Flex-CPT project is primarily funded by Business Finland, with the remaining funds provided by companies and research organizations.
The Flex-CPT consortium aims to demonstrate robust powertrains achieving up to 100% reduction in tailpipe greenhouse gas emissions, optimising individual fuel streams according to availability, pricing, combustion efficiency and emissions.
The Flex-CPT research plan includes 33 innovations, including fuel reforming-based reactivity on demand, adaptive aftertreatment deposit formation control, through to thermal management of hybrid systems exploiting the synergy of fuel storage technology with electrification.