DNV GL and FPSO specialist Bluewater are undertaking a pilot project to use hybrid digital twin technology to predict and analyze fatigue in the hull of an FPSO in the North Sea, the company said in its release.
The project aims to validate and quantify the benefits of creating a virtual replica of the FPSO to optimize the structural safety of the vessel and enhance risk-based inspection (RBI), a decision-making methodology for optimizing inspection regimes. The pilot underpins Bluewater’s mission to take a proactive, responsible approach to safety and environmental care in its operations.
Bluewater’s Aoka Mizu FPSO, currently in operation in the Lancaster field, west of Shetland, will be used. To date, the pilot test has shown encouraging results.
DNV GL’s unique combination of domain experience, inspection capabilities and digital analytics and modelling, enables the monitoring of the asset’s hull structure during operation without dependence on costly routine inspection regimes. Termed ‘Nerves of Steel’, the underlying concept permits the use of various data sets (external environmental data or local sensor data) combined with digital models of the asset, to develop a hybrid replica model of the vessel’s structure. This can be used in real-time to monitor the asset’s condition, identify and monitor high risk locations, and plan targeted and cost-efficient maintenance and inspection activities.
Hybrid twin technology uses a combination of numerical design models and data from actively recorded strain gauge sensors on board the FPSO. These sensors allow for a full understanding of the accumulative loading and current state of the FPSO structure. The technology blends computer-simulated modelling with real-time data, which is then streamed to the operator via DNV GL’s Veracity data platform or an existing data transfer solution.
DNV GL’s visual dashboard presents data to Bluewater on stresses in the hull’s structure, alongside information that can be used to identify areas with relative higher risk of cracks or deformities to occur. The information, which is constantly recorded, can be accessed and analyzed to inform decision-making and implement inspection based on risk priority.
The trial will expand on traditional FPSO integrity management strategies, which are based on software-based assumptions made at the design stage as well as current inspection record to enhance RBI decision-making. The pilot with Bluewater is expected to provide new insight and smarter ways of managing risks and costs related to structural integrity management.
This is DNV GL’s third pilot project evaluating the performance of hybrid digital twin technology. With global support from the advisor’s experts in Singapore, the UK and Norway, the first involved defining a repair procedure for a FPSO flare tower. Another trial, which is still ongoing, is being performed on a fixed offshore platform.